Description
Pretrained RobertaForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. RoBERTa-Banking77 is a English model originally trained by philschmid.
Predicted Entities
card_payment_not_recognised, activate_my_card, exchange_charge, getting_virtual_card, wrong_amount_of_cash_received, card_delivery_estimate, unable_to_verify_identity, cash_withdrawal_charge, get_physical_card, wrong_exchange_rate_for_cash_withdrawal, declined_cash_withdrawal, top_up_by_card_charge, card_not_working, card_swallowed, card_payment_wrong_exchange_rate, atm_support, getting_spare_card, card_acceptance, card_linking, request_refund, reverted_card_payment?, top_up_failed, verify_my_identity, exchange_rate, virtual_card_not_working, country_support, disposable_card_limits, card_arrival, supported_cards_and_currencies, top_up_reverted, apple_pay_or_google_pay, transaction_charged_twice, Refund_not_showing_up, balance_not_updated_after_cheque_or_cash_deposit, lost_or_stolen_phone, order_physical_card, declined_card_payment, cash_withdrawal_not_recognised, edit_personal_details, contactless_not_working, change_pin, cancel_transfer, extra_charge_on_statement, balance_not_updated_after_bank_transfer, lost_or_stolen_card, failed_transfer, verify_source_of_funds, verify_top_up, pending_card_payment, transfer_timing, why_verify_identity, card_about_to_expire, compromised_card, direct_debit_payment_not_recognised, transfer_into_account, pending_top_up, top_up_limits, top_up_by_cash_or_cheque, pin_blocked, visa_or_mastercard, declined_transfer, get_disposable_virtual_card, automatic_top_up, top_up_by_bank_transfer_charge, terminate_account, passcode_forgotten, beneficiary_not_allowed, receiving_money, fiat_currency_support, topping_up_by_card, pending_transfer, exchange_via_app, transfer_fee_charged, pending_cash_withdrawal, transfer_not_received_by_recipient, age_limit, card_payment_fee_charged
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
seq_classifier = RoBertaForSequenceClassification.pretrained("roberta_classifier_banking77","en") \
.setInputCols(["document", "token"]) \
.setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, seq_classifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCols(Array("text"))
.setOutputCols(Array("document"))
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val seq_classifier = RoBertaForSequenceClassification.pretrained("roberta_classifier_banking77","en")
.setInputCols(Array("document", "token"))
.setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, seq_classifier))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.classify.roberta.banking.").predict("""PUT YOUR STRING HERE""")
Model Information
| Model Name: | roberta_classifier_banking77 |
| Compatibility: | Spark NLP 5.2.0+ |
| License: | Open Source |
| Edition: | Official |
| Input Labels: | [document, token] |
| Output Labels: | [class] |
| Language: | en |
| Size: | 308.8 MB |
| Case sensitive: | true |
| Max sentence length: | 256 |
References
References
- https://huggingface.co/philschmid/RoBERTa-Banking77
- https://paperswithcode.com/sota?task=Text+Classification&dataset=BANKING77