Description
Pretrained RobertaForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. distilroberta-finetuned-banking77 is a English model originally trained by mrm8488.
Predicted Entities
verify_top_up, visa_or_mastercard, cash_withdrawal_not_recognised, card_swallowed, exchange_rate, fiat_currency_support, automatic_top_up, unable_to_verify_identity, disposable_card_limits, declined_transfer, activate_my_card, pending_top_up, balance_not_updated_after_bank_transfer, top_up_limits, age_limit, get_disposable_virtual_card, lost_or_stolen_phone, card_payment_fee_charged, request_refund, passcode_forgotten, atm_support, cancel_transfer, transaction_charged_twice, card_about_to_expire, transfer_into_account, change_pin, card_payment_not_recognised, exchange_via_app, get_physical_card, terminate_account, transfer_timing, order_physical_card, verify_my_identity, card_linking, apple_pay_or_google_pay, verify_source_of_funds, wrong_exchange_rate_for_cash_withdrawal, wrong_amount_of_cash_received, virtual_card_not_working, pin_blocked, card_acceptance, card_arrival, pending_transfer, country_support, why_verify_identity, edit_personal_details, card_payment_wrong_exchange_rate, pending_cash_withdrawal, failed_transfer, getting_spare_card, balance_not_updated_after_cheque_or_cash_deposit, top_up_by_bank_transfer_charge, topping_up_by_card, reverted_card_payment?, exchange_charge, transfer_not_received_by_recipient, top_up_reverted, pending_card_payment, top_up_by_card_charge, supported_cards_and_currencies, getting_virtual_card, Refund_not_showing_up, top_up_by_cash_or_cheque, transfer_fee_charged, beneficiary_not_allowed, card_not_working, lost_or_stolen_card, declined_cash_withdrawal, card_delivery_estimate, contactless_not_working, direct_debit_payment_not_recognised, cash_withdrawal_charge, declined_card_payment, extra_charge_on_statement, receiving_money, compromised_card, top_up_failed
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
seq_classifier = RoBertaForSequenceClassification.pretrained("roberta_classifier_distil_finetuned_banking77","en") \
.setInputCols(["document", "token"]) \
.setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, seq_classifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCols(Array("text"))
.setOutputCols(Array("document"))
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val seq_classifier = RoBertaForSequenceClassification.pretrained("roberta_classifier_distil_finetuned_banking77","en")
.setInputCols(Array("document", "token"))
.setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, seq_classifier))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.classify.roberta.banking.distilled_finetuned").predict("""PUT YOUR STRING HERE""")
Model Information
| Model Name: | roberta_classifier_distil_finetuned_banking77 |
| Compatibility: | Spark NLP 5.2.0+ |
| License: | Open Source |
| Edition: | Official |
| Input Labels: | [document, token] |
| Output Labels: | [class] |
| Language: | en |
| Size: | 308.9 MB |
| Case sensitive: | true |
| Max sentence length: | 256 |
References
References
- https://huggingface.co/mrm8488/distilroberta-finetuned-banking77
- https://twitter.com/mrm8488
- https://www.linkedin.com/in/manuel-romero-cs/