English RobertaForSequenceClassification Large Cased model

Description

Pretrained RobertaForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. roberta-large-mnli is a English model originally trained by HuggingFace.

Predicted Entities

ENTAILMENT, NEUTRAL, CONTRADICTION

Download Copy S3 URI

How to use

documentAssembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")

tokenizer = Tokenizer() \
    .setInputCols("document") \
    .setOutputCol("token")

seq_classifier = RoBertaForSequenceClassification.pretrained("roberta_classifier_large_mnli","en") \
    .setInputCols(["document", "token"]) \
    .setOutputCol("class")

pipeline = Pipeline(stages=[documentAssembler, tokenizer, seq_classifier])

data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")

result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
      .setInputCols(Array("text"))
      .setOutputCols(Array("document"))

val tokenizer = new Tokenizer()
    .setInputCols("document")
    .setOutputCol("token")

val seq_classifier = RoBertaForSequenceClassification.pretrained("roberta_classifier_large_mnli","en")
    .setInputCols(Array("document", "token"))
    .setOutputCol("class")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, seq_classifier))

val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")

val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.classify.roberta.large.by_uploaded by huggingface").predict("""PUT YOUR STRING HERE""")

Model Information

Model Name: roberta_classifier_large_mnli
Compatibility: Spark NLP 5.2.0+
License: Open Source
Edition: Official
Input Labels: [document, token]
Output Labels: [class]
Language: en
Size: 845.5 MB
Case sensitive: true
Max sentence length: 256

References

References

  • https://huggingface.co/roberta-large-mnli
  • https://github.com/facebookresearch/fairseq/tree/main/examples/roberta
  • https://arxiv.org/abs/1907.11692
  • https://github.com/facebookresearch/fairseq/tree/main/examples/roberta
  • https://github.com/facebookresearch/fairseq/tree/main/examples/roberta
  • https://aclanthology.org/2021.acl-long.330.pdf
  • https://dl.acm.org/doi/pdf/10.1145/3442188.3445922
  • https://cims.nyu.edu/~sbowman/multinli/
  • https://yknzhu.wixsite.com/mbweb
  • https://en.wikipedia.org/wiki/English_Wikipedia
  • https://commoncrawl.org/2016/10/news-dataset-available/
  • https://github.com/jcpeterson/openwebtext
  • https://arxiv.org/abs/1806.02847
  • https://github.com/facebookresearch/fairseq/tree/main/examples/roberta
  • https://arxiv.org/pdf/1804.07461.pdf
  • https://cims.nyu.edu/~sbowman/multinli/
  • https://arxiv.org/pdf/1804.07461.pdf
  • https://arxiv.org/pdf/1804.07461.pdf
  • https://arxiv.org/abs/1704.05426
  • https://arxiv.org/abs/1508.05326
  • https://arxiv.org/pdf/1809.05053.pdf
  • https://cims.nyu.edu/~sbowman/multinli/
  • https://arxiv.org/pdf/1809.05053.pdf
  • https://mlco2.github.io/impact#compute
  • https://arxiv.org/abs/1910.09700
  • https://arxiv.org/pdf/1907.11692.pdf
  • https://arxiv.org/pdf/1907.11692.pdf