Description
Pretrained RobertaForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. Roberta_Multiclass_TextClassification is a English model originally trained by palakagl.
Predicted Entities
transport_ticket, general_commandstop, iot_cleaning, general_praise, music_settings, general_quirky, recommendation_locations, iot_hue_lightoff, audio_volume_mute, calendar_set, iot_coffee, datetime_convert, general_explain, cooking_recipe, qa_definition, news_query, music_likeness, recommendation_movies, general_dontcare, general_affirm, recommendation_events, alarm_set, qa_maths, qa_factoid, play_podcasts, takeaway_query, email_sendemail, email_addcontact, transport_traffic, iot_wemo_off, general_negate, iot_hue_lightdim, audio_volume_up, general_repeat, iot_wemo_on, alarm_query, lists_createoradd, music_query, weather_query, transport_query, alarm_remove, takeaway_order, social_post, general_confirm, calendar_query, iot_hue_lightup, general_joke, calendar_remove, email_querycontact, iot_hue_lightchange, iot_hue_lighton, play_radio, social_query, lists_query, transport_taxi, lists_remove, email_query, datetime_query, play_music, qa_stock, audio_volume_down, qa_currency, play_game, play_audiobook
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
seq_classifier = RoBertaForSequenceClassification.pretrained("roberta_classifier_multiclass_textclassification","en") \
.setInputCols(["document", "token"]) \
.setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, seq_classifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCols(Array("text"))
.setOutputCols(Array("document"))
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val seq_classifier = RoBertaForSequenceClassification.pretrained("roberta_classifier_multiclass_textclassification","en")
.setInputCols(Array("document", "token"))
.setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, seq_classifier))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.classify.roberta.by_palakagl").predict("""PUT YOUR STRING HERE""")
Model Information
| Model Name: | roberta_classifier_multiclass_textclassification |
| Compatibility: | Spark NLP 5.2.0+ |
| License: | Open Source |
| Edition: | Official |
| Input Labels: | [document, token] |
| Output Labels: | [class] |
| Language: | en |
| Size: | 421.9 MB |
| Case sensitive: | true |
| Max sentence length: | 256 |
References
References
- https://huggingface.co/palakagl/Roberta_Multiclass_TextClassification