English RobertaForSequenceClassification Cased model (from rti-international)

Description

Pretrained RobertaForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. rota is a English model originally trained by rti-international.

Predicted Entities

TRAFFICKING - OTHER CONTROLLED SUBSTANCES, INVASION OF PRIVACY, HABITUAL OFFENDER, LARCENY/THEFT - VALUE UNKNOWN, TAX LAW (FEDERAL ONLY), MANSLAUGHTER - VEHICULAR, CONTROLLED SUBSTANCE - OFFENSE UNSPECIFIED, WEAPON OFFENSE, RAPE - FORCE, DRUG OFFENSES - VIOLATION/DRUG UNSPECIFIED, TRAFFIC OFFENSES - MINOR, FLIGHT TO AVOID PROSECUTION, BRIBERY AND CONFLICT OF INTEREST, KIDNAPPING, AUTO THEFT, RIOTING, PROPERTY OFFENSES - OTHER, EMBEZZLEMENT (FEDERAL ONLY), CHILD ABUSE, HEROIN VIOLATION - OFFENSE UNSPECIFIED, BLACKMAIL/EXTORTION/INTIMIDATION, GRAND LARCENY - THEFT OVER $200, DRIVING UNDER INFLUENCE - DRUGS, EMBEZZLEMENT, FORGERY/FRAUD, POSSESSION/USE - MARIJUANA/HASHISH, STOLEN PROPERTY - TRAFFICKING, FORGERY (FEDERAL ONLY), PROBATION VIOLATION, FRAUD (FEDERAL ONLY), UNARMED ROBBERY, ARSON, COCAINE OR CRACK VIOLATION OFFENSE UNSPECIFIED, SIMPLE ASSAULT, DESTRUCTION OF PROPERTY, POSSESSION/USE - DRUG UNSPECIFIED, COUNTERFEITING (FEDERAL ONLY), FORCIBLE SODOMY, RAPE - STATUTORY - NO FORCE, UNAUTHORIZED USE OF VEHICLE, POSSESSION/USE - OTHER CONTROLLED SUBSTANCES, TRAFFICKING - DRUG UNSPECIFIED, IMMIGRATION VIOLATIONS, VOLUNTARY/NONNEGLIGENT MANSLAUGHTER, DRIVING WHILE INTOXICATED, PETTY LARCENY - THEFT UNDER $200, HIT/RUN DRIVING - PROPERTY DAMAGE, MURDER, REGULATORY OFFENSES (FEDERAL ONLY), FAMILY RELATED OFFENSES, POSSESSION/USE - HEROIN, PUBLIC ORDER OFFENSES - OTHER, DRIVING UNDER THE INFLUENCE, TRESPASSING, CONTRIBUTING TO DELINQUENCY OF A MINOR, ARMED ROBBERY, FELONY - UNSPECIFIED, UNSPECIFIED HOMICIDE, MARIJUANA/HASHISH VIOLATION - OFFENSE UNSPECIFIED, TRAFFICKING - COCAINE OR CRACK, COMMERCIALIZED VICE, TRAFFICKING - HEROIN, LIQUOR LAW VIOLATIONS, ASSAULTING PUBLIC OFFICER, JUVENILE OFFENSES, VIOLENT OFFENSES - OTHER, MISDEMEANOR UNSPECIFIED, HIT AND RUN DRIVING, CONTEMPT OF COURT, BURGLARY, MANSLAUGHTER - NON-VEHICULAR, PAROLE VIOLATION, DRUNKENNESS/VAGRANCY/DISORDERLY CONDUCT, STOLEN PROPERTY - RECEIVING, TRAFFICKING MARIJUANA/HASHISH, SEXUAL ASSAULT - OTHER, LEWD ACT WITH CHILDREN, POSSESSION/USE - COCAINE OR CRACK, OBSTRUCTION - LAW ENFORCEMENT, RACKETEERING/EXTORTION (FEDERAL ONLY), AGGRAVATED ASSAULT, MORALS/DECENCY - OFFENSE, ESCAPE FROM CUSTODY

Download Copy S3 URI

How to use

documentAssembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")

tokenizer = Tokenizer() \
    .setInputCols("document") \
    .setOutputCol("token")

seq_classifier = RoBertaForSequenceClassification.pretrained("roberta_classifier_rota","en") \
    .setInputCols(["document", "token"]) \
    .setOutputCol("class")

pipeline = Pipeline(stages=[documentAssembler, tokenizer, seq_classifier])

data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")

result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
      .setInputCols(Array("text"))
      .setOutputCols(Array("document"))

val tokenizer = new Tokenizer()
    .setInputCols("document")
    .setOutputCol("token")

val seq_classifier = RoBertaForSequenceClassification.pretrained("roberta_classifier_rota","en")
    .setInputCols(Array("document", "token"))
    .setOutputCol("class")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, seq_classifier))

val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")

val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.classify.roberta.by_rti_international").predict("""PUT YOUR STRING HERE""")

Model Information

Model Name: roberta_classifier_rota
Compatibility: Spark NLP 5.2.0+
License: Open Source
Edition: Official
Input Labels: [document, token]
Output Labels: [class]
Language: en
Size: 308.8 MB
Case sensitive: true
Max sentence length: 256

References

References

  • https://huggingface.co/rti-international/rota
  • https://github.com/RTIInternational/rota
  • https://doi.org/10.5281/zenodo.4770492
  • https://www.icpsr.umich.edu/web/NACJD/studies/30799/datadocumentation#
  • https://web.archive.org/web/20201021001250/https://www.icpsr.umich.edu/web/pages/NACJD/guides/ncrp.html