Description
Pretrained RobertaForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. rota is a English model originally trained by rti-international.
Predicted Entities
TRAFFICKING - OTHER CONTROLLED SUBSTANCES, INVASION OF PRIVACY, HABITUAL OFFENDER, LARCENY/THEFT - VALUE UNKNOWN, TAX LAW (FEDERAL ONLY), MANSLAUGHTER - VEHICULAR, CONTROLLED SUBSTANCE - OFFENSE UNSPECIFIED, WEAPON OFFENSE, RAPE - FORCE, DRUG OFFENSES - VIOLATION/DRUG UNSPECIFIED, TRAFFIC OFFENSES - MINOR, FLIGHT TO AVOID PROSECUTION, BRIBERY AND CONFLICT OF INTEREST, KIDNAPPING, AUTO THEFT, RIOTING, PROPERTY OFFENSES - OTHER, EMBEZZLEMENT (FEDERAL ONLY), CHILD ABUSE, HEROIN VIOLATION - OFFENSE UNSPECIFIED, BLACKMAIL/EXTORTION/INTIMIDATION, GRAND LARCENY - THEFT OVER $200, DRIVING UNDER INFLUENCE - DRUGS, EMBEZZLEMENT, FORGERY/FRAUD, POSSESSION/USE - MARIJUANA/HASHISH, STOLEN PROPERTY - TRAFFICKING, FORGERY (FEDERAL ONLY), PROBATION VIOLATION, FRAUD (FEDERAL ONLY), UNARMED ROBBERY, ARSON, COCAINE OR CRACK VIOLATION OFFENSE UNSPECIFIED, SIMPLE ASSAULT, DESTRUCTION OF PROPERTY, POSSESSION/USE - DRUG UNSPECIFIED, COUNTERFEITING (FEDERAL ONLY), FORCIBLE SODOMY, RAPE - STATUTORY - NO FORCE, UNAUTHORIZED USE OF VEHICLE, POSSESSION/USE - OTHER CONTROLLED SUBSTANCES, TRAFFICKING - DRUG UNSPECIFIED, IMMIGRATION VIOLATIONS, VOLUNTARY/NONNEGLIGENT MANSLAUGHTER, DRIVING WHILE INTOXICATED, PETTY LARCENY - THEFT UNDER $200, HIT/RUN DRIVING - PROPERTY DAMAGE, MURDER, REGULATORY OFFENSES (FEDERAL ONLY), FAMILY RELATED OFFENSES, POSSESSION/USE - HEROIN, PUBLIC ORDER OFFENSES - OTHER, DRIVING UNDER THE INFLUENCE, TRESPASSING, CONTRIBUTING TO DELINQUENCY OF A MINOR, ARMED ROBBERY, FELONY - UNSPECIFIED, UNSPECIFIED HOMICIDE, MARIJUANA/HASHISH VIOLATION - OFFENSE UNSPECIFIED, TRAFFICKING - COCAINE OR CRACK, COMMERCIALIZED VICE, TRAFFICKING - HEROIN, LIQUOR LAW VIOLATIONS, ASSAULTING PUBLIC OFFICER, JUVENILE OFFENSES, VIOLENT OFFENSES - OTHER, MISDEMEANOR UNSPECIFIED, HIT AND RUN DRIVING, CONTEMPT OF COURT, BURGLARY, MANSLAUGHTER - NON-VEHICULAR, PAROLE VIOLATION, DRUNKENNESS/VAGRANCY/DISORDERLY CONDUCT, STOLEN PROPERTY - RECEIVING, TRAFFICKING MARIJUANA/HASHISH, SEXUAL ASSAULT - OTHER, LEWD ACT WITH CHILDREN, POSSESSION/USE - COCAINE OR CRACK, OBSTRUCTION - LAW ENFORCEMENT, RACKETEERING/EXTORTION (FEDERAL ONLY), AGGRAVATED ASSAULT, MORALS/DECENCY - OFFENSE, ESCAPE FROM CUSTODY
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
seq_classifier = RoBertaForSequenceClassification.pretrained("roberta_classifier_rota","en") \
.setInputCols(["document", "token"]) \
.setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, seq_classifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCols(Array("text"))
.setOutputCols(Array("document"))
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val seq_classifier = RoBertaForSequenceClassification.pretrained("roberta_classifier_rota","en")
.setInputCols(Array("document", "token"))
.setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, seq_classifier))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.classify.roberta.by_rti_international").predict("""PUT YOUR STRING HERE""")
Model Information
| Model Name: | roberta_classifier_rota |
| Compatibility: | Spark NLP 5.2.0+ |
| License: | Open Source |
| Edition: | Official |
| Input Labels: | [document, token] |
| Output Labels: | [class] |
| Language: | en |
| Size: | 308.8 MB |
| Case sensitive: | true |
| Max sentence length: | 256 |
References
References
- https://huggingface.co/rti-international/rota
- https://github.com/RTIInternational/rota
- https://doi.org/10.5281/zenodo.4770492
- https://www.icpsr.umich.edu/web/NACJD/studies/30799/datadocumentation#
- https://web.archive.org/web/20201021001250/https://www.icpsr.umich.edu/web/pages/NACJD/guides/ncrp.html