Spanish RobertaForSequenceClassification Base Cased model (from mrm8488)

Description

Pretrained RobertaForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. RuPERTa-base-finetuned-pawsx-es is a Spanish model originally trained by mrm8488.

Predicted Entities

Download Copy S3 URI

How to use

documentAssembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")

tokenizer = Tokenizer() \
    .setInputCols("document") \
    .setOutputCol("token")

classifier = RoBertaForSequenceClassification.pretrained("roberta_sequence_classifier_ruperta_base_finetuned_pawsx","es") \
    .setInputCols(["document", "token"]) \
    .setOutputCol("class")

pipeline = Pipeline(stages=[documentAssembler, tokenizer, classifier])

data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")

result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
      .setInputCols(Array("text"))
      .setOutputCols(Array("document"))

val tokenizer = new Tokenizer()
    .setInputCols("document")
    .setOutputCol("token")

val classifer = RoBertaForSequenceClassification.pretrained("roberta_sequence_classifier_ruperta_base_finetuned_pawsx","es")
    .setInputCols(Array("document", "token"))
    .setOutputCol("class")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, classifier))

val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")

val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("es.classify.roberta.pawsx_xtreme.base_finetuned").predict("""PUT YOUR STRING HERE""")

Model Information

Model Name: roberta_sequence_classifier_ruperta_base_finetuned_pawsx
Compatibility: Spark NLP 5.2.0+
License: Open Source
Edition: Official
Input Labels: [document, token]
Output Labels: [class]
Language: es
Size: 472.2 MB
Case sensitive: true
Max sentence length: 256

References

References

  • https://huggingface.co/mrm8488/RuPERTa-base-finetuned-pawsx-es