English minilmv2_l6_h768_distilled_from_roberta_large_boolq RoBertaForSequenceClassification from nfliu

Description

Pretrained RoBertaForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.minilmv2_l6_h768_distilled_from_roberta_large_boolq is a English model originally trained by nfliu.

Download Copy S3 URI

How to use


document_assembler = DocumentAssembler()\
    .setInputCol("text")\
    .setOutputCol("document")

tokenizer = Tokenizer()\
    .setInputCols("document")\
    .setOutputCol("token")  
    
sequenceClassifier = RoBertaForSequenceClassification.pretrained("minilmv2_l6_h768_distilled_from_roberta_large_boolq","en")\
            .setInputCols(["document","token"])\
            .setOutputCol("class")

pipeline = Pipeline().setStages([document_assembler, tokenizer, sequenceClassifier])

data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")

result = pipeline.fit(data).transform(data)


val document_assembler = new DocumentAssembler()
    .setInputCol("text")
    .setOutputCol("document")

val tokenizer = new Tokenizer()
    .setInputCols("document") 
    .setOutputCol("token")  
    
val sequenceClassifier = RoBertaForSequenceClassification.pretrained("minilmv2_l6_h768_distilled_from_roberta_large_boolq","en")
            .setInputCols(Array("document","token"))
            .setOutputCol("class")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, sequenceClassifier))

val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")

val result = pipeline.fit(data).transform(data)


Model Information

Model Name: minilmv2_l6_h768_distilled_from_roberta_large_boolq
Compatibility: Spark NLP 5.2.0+
License: Open Source
Edition: Official
Input Labels: [documents, token]
Output Labels: [class]
Language: en
Size: 298.3 MB

References

https://huggingface.co/nfliu/MiniLMv2-L6-H768-distilled-from-RoBERTa-Large_boolq