Description
Pretrained RobertaForTokenClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. roberta_large_legal_act_extraction
is a English model originally trained by Lexemo
.
Predicted Entities
another_act_sequence_start
, another_act_equal_previous_act
, article_relevant_previous_act
, abbreviation_relevant_following_act
, article_relevant_following_act
, article_current
, service_label
, another_act_abbreviation
, abbreviation_relevant_previous_act
, article_relevant_previous_act_range_start
, another_article_equal_previous_article
, article_relevant_previous_act_range_end
, article_relevant_current_act
, article_relevant_current_act_range_start
, article_relevant_current_act_range_end
, article_relevant_following_act_range_end
, article_relevant_following_act_range_start
, another_act_sequence_end
, another_act
, current_act
, treaty_name
, treaty_abbreviation
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = Tokenizer() \
.setInputCols("sentence") \
.setOutputCol("token")
tokenClassifier = BertForTokenClassification.pretrained("roberta_ner_roberta_large_legal_act_extraction","en") \
.setInputCols(["sentence", "token"]) \
.setOutputCol("ner")
pipeline = Pipeline(stages=[documentAssembler, sentenceDetector, tokenizer, tokenClassifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")
.setInputCols(Array("document"))
.setOutputCol("sentence")
val tokenizer = new Tokenizer()
.setInputCols(Array("sentence"))
.setOutputCol("token")
val tokenClassifier = BertForTokenClassification.pretrained("roberta_ner_roberta_large_legal_act_extraction","en")
.setInputCols(Array("sentence", "token"))
.setOutputCol("ner")
val pipeline = new Pipeline().setStages(Array(documentAssembler,sentenceDetector, tokenizer, tokenClassifier))
val data = Seq("PUT YOUR STRING HERE").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.ner.roberta.large_legal").predict("""PUT YOUR STRING HERE""")
Model Information
Model Name: | roberta_ner_roberta_large_legal_act_extraction |
Compatibility: | Spark NLP 5.2.1+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [ner] |
Language: | en |
Size: | 1.3 GB |
Case sensitive: | true |
Max sentence length: | 128 |
References
References
- https://huggingface.co/Lexemo/roberta_large_legal_act_extraction