Description
Pretrained RoBertaForQuestionAnswering model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.roberta_qa_bsc_temu_roberta_base_bne_sqac
is a Castilian, Spanish model originally trained by BSC-TeMU.
How to use
document_assembler = MultiDocumentAssembler() \
.setInputCol(["question", "context"]) \
.setOutputCol(["document_question", "document_context"])
spanClassifier = RoBertaForQuestionAnswering.pretrained("roberta_qa_bsc_temu_roberta_base_bne_sqac","es") \
.setInputCols(["document_question","document_context"]) \
.setOutputCol("answer")
pipeline = Pipeline().setStages([document_assembler, spanClassifier])
pipelineModel = pipeline.fit(data)
pipelineDF = pipelineModel.transform(data)
val document_assembler = new MultiDocumentAssembler()
.setInputCol(Array("question", "context"))
.setOutputCol(Array("document_question", "document_context"))
val spanClassifier = RoBertaForQuestionAnswering
.pretrained("roberta_qa_bsc_temu_roberta_base_bne_sqac", "es")
.setInputCols(Array("document_question","document_context"))
.setOutputCol("answer")
val pipeline = new Pipeline().setStages(Array(document_assembler, spanClassifier))
val pipelineModel = pipeline.fit(data)
val pipelineDF = pipelineModel.transform(data)
Model Information
Model Name: | roberta_qa_bsc_temu_roberta_base_bne_sqac |
Compatibility: | Spark NLP 5.2.1+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [question, context] |
Output Labels: | [answer] |
Language: | es |
Size: | 459.8 MB |
Case sensitive: | true |
Max sentence length: | 512 |
References
https://huggingface.co/BSC-TeMU/roberta-base-bne-sqac