Affiliation Classifier

Description

Predicts the affiliation, if any, of the information in a paragraph.

Predicted Entities

Download Copy S3 URI

How to use

from sparknlp.annotator import *
from sparknlp.base import *

document_assembler = DocumentAssembler() \
    .setInputCol('text') \
    .setOutputCol('document')

tokenizer = Tokenizer() \
    .setInputCols(['document']) \
    .setOutputCol('token')

sequence_classifier = RoBertaForSequenceClassification.load(MODEL_NAME)
  .setInputCols(["document",'token'])\
  .setOutputCol("class")  

pipeline = Pipeline(stages=[
    document_assembler, 
    tokenizer,
    sequence_classifier
])

# couple of simple examples
example = spark.createDataFrame([["I love you!"], ['I feel lucky to be here.']]).toDF("text")

result = pipeline.fit(example).transform(example)

# result is a DataFrame
result.select("text", "class.result").show()

Model Information

Model Name: Affiliation_Classifier_Roberta
Compatibility: Spark NLP 5.2.0+
License: Open Source
Edition: Community
Input Labels: [document, token]
Output Labels: [class]
Language: en
Size: 441.4 MB
Case sensitive: true
Max sentence length: 128
Dependencies: None