Description
Pretrained CamemBertForTokenClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.wangchanberta_w20 is a English model originally trained by Norrawee.
How to use
documentAssembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")
    
tokenizer = Tokenizer() \
        .setInputCols(["document"]) \
        .setOutputCol("token")
        
    
tokenClassifier = CamemBertForTokenClassification.pretrained("wangchanberta_w20","en") \
            .setInputCols(["document","token"]) \
            .setOutputCol("ner")
pipeline = Pipeline().setStages([documentAssembler, tokenizer, tokenClassifier])
pipelineModel = pipeline.fit(data)
pipelineDF = pipelineModel.transform(data)
val documentAssembler = new DocumentAssembler()
    .setInputCol("text") 
    .setOutputCol("document")
val tokenizer = Tokenizer() \
        .setInputCols(Array("document")) \
        .setOutputCol("token")
val tokenClassifier = CamemBertForTokenClassification  
    .pretrained("wangchanberta_w20", "en")
    .setInputCols(Array("document","token")) 
    .setOutputCol("ner") 
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, tokenClassifier))
val pipelineModel = pipeline.fit(data)
val pipelineDF = pipelineModel.transform(data)
Model Information
| Model Name: | wangchanberta_w20 | 
| Compatibility: | Spark NLP 5.2.4+ | 
| License: | Open Source | 
| Edition: | Official | 
| Input Labels: | [documents, token] | 
| Output Labels: | [ner] | 
| Language: | en | 
| Size: | 392.2 MB | 
References
https://huggingface.co/Norrawee/wangchanberta-w20