Description
Pretrained XlmRoBertaForTokenClassification, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.xlmroberta_ner_base_finetuned_naija_finetuned_ner_swahili_pipeline is a Swahili (macrolanguage) model originally trained by mbeukman.
How to use
pipeline = PretrainedPipeline("xlmroberta_ner_base_finetuned_naija_finetuned_ner_swahili_pipeline", lang = "sw")
annotations = pipeline.transform(df)
val pipeline = new PretrainedPipeline("xlmroberta_ner_base_finetuned_naija_finetuned_ner_swahili_pipeline", lang = "sw")
val annotations = pipeline.transform(df)
Model Information
| Model Name: | xlmroberta_ner_base_finetuned_naija_finetuned_ner_swahili_pipeline |
| Type: | pipeline |
| Compatibility: | Spark NLP 5.4.0+ |
| License: | Open Source |
| Edition: | Official |
| Language: | sw |
| Size: | 1.0 GB |
References
https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-naija-finetuned-ner-swahili
Included Models
- DocumentAssembler
- TokenizerModel
- XlmRoBertaForTokenClassification