Description
Pretrained MPNetForTokenClassification, fine tuned in huggingface in house and then imported to Spark-NLP o provide scalability and production-readiness.
How to use
documentAssembler = DocumentAssembler() \
.setInputCol('text') \
.setOutputCol('document')
tokenizer = Tokenizer() \
.setInputCols(['document']) \
.setOutputCol('token')
tokenClassifier = MPNetForTokenClassification.pretrained("mpnet_base_token_classifier","en") \
.setInputCols(["documents","token"]) \
.setOutputCol("ner")
pipeline = Pipeline().setStages([documentAssembler, tokenizer, tokenClassifier])
data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text")
pipelineModel = pipeline.fit(data)
pipelineDF = pipelineModel.transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCols("text")
.setOutputCols("document")
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val tokenClassifier = MPNetForTokenClassification.pretrained("mpnet_base_token_classifier", "en")
.setInputCols(Array("documents","token"))
.setOutputCol("ner")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, tokenClassifier))
val data = Seq("I love spark-nlp").toDS.toDF("text")
val pipelineModel = pipeline.fit(data)
val pipelineDF = pipelineModel.transform(data)
Model Information
Model Name: | mpnet_base_token_classifier |
Compatibility: | Spark NLP 5.4.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [token, document] |
Output Labels: | [label] |
Language: | en |
Size: | 395.9 MB |
Case sensitive: | true |