mxbai large Model

Description

Pretrained MxbaiEmbeddings, adataped from huggingface imported to Spark-NLP to provide scalability and production-readiness.

Download Copy S3 URI

How to use


documentAssembler = DocumentAssembler() \
    .setInputCol('text') \
    .setOutputCol('document')

mxbai = MxbaiEmbeddings.pretrained("mxbai_large_v1","en") \
    .setInputCols("document") \
    .setOutputCol("embeddings") \

pipeline = Pipeline().setStages([documentAssembler, mxbai])
data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text")
pipelineModel = pipeline.fit(data)
pipelineDF = pipelineModel.transform(data)


val documentAssembler = new DocumentAssembler()
    .setInputCols("text")
    .setOutputCols("document")

val mxbai = MxbaiEmbeddings.pretrained("mxbai_large_v1", "en")
    .setInputCols("documents")
    .setOutputCol("embeddings")

val pipeline = new Pipeline().setStages(Array(documentAssembler, mxbai))
val data = Seq("I love spark-nlp").toDS.toDF("text")
val pipelineModel = pipeline.fit(data)
val pipelineDF = pipelineModel.transform(data)

Model Information

Model Name: mxbai_large_v1
Compatibility: Spark NLP 5.4.2+
License: Open Source
Edition: Official
Input Labels: [document]
Output Labels: [Mxbai]
Language: en
Size: 793.8 MB