Description
Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.mt5_small_finetuned_mt5_small_summarization_task is a English model originally trained by shahadalll.
How to use
     
documentAssembler = DocumentAssembler() \
    .setInputCol('text') \
    .setOutputCol('document')
t5  = T5Transformer.pretrained("mt5_small_finetuned_mt5_small_summarization_task","en") \
     .setInputCols(["document"]) \
     .setOutputCol("output")
pipeline = Pipeline().setStages([documentAssembler, t5])
data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text")
pipelineModel = pipeline.fit(data)
pipelineDF = pipelineModel.transform(data)
val documentAssembler = new DocumentAssembler()
    .setInputCols("text")
    .setOutputCols("document")
val t5 = T5Transformer.pretrained("mt5_small_finetuned_mt5_small_summarization_task", "en")
    .setInputCols(Array("documents")) 
    .setOutputCol("output") 
    
val pipeline = new Pipeline().setStages(Array(documentAssembler, t5))
val data = Seq("I love spark-nlp").toDS.toDF("text")
val pipelineModel = pipeline.fit(data)
val pipelineDF = pipelineModel.transform(data)
Model Information
| Model Name: | mt5_small_finetuned_mt5_small_summarization_task | 
| Compatibility: | Spark NLP 5.4.2+ | 
| License: | Open Source | 
| Edition: | Official | 
| Input Labels: | [document] | 
| Output Labels: | [output] | 
| Language: | en | 
| Size: | 1.2 GB | 
References
https://huggingface.co/shahadalll/mt5-small-finetuned-mt5-small-summarization-task