English russian_summarization_lenta_model_mt5_base_7_epochs_1024 T5Transformer from i-k-a

Description

Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.russian_summarization_lenta_model_mt5_base_7_epochs_1024 is a English model originally trained by i-k-a.

Download Copy S3 URI

How to use

     
documentAssembler = DocumentAssembler() \
    .setInputCol('text') \
    .setOutputCol('document')

t5  = T5Transformer.pretrained("russian_summarization_lenta_model_mt5_base_7_epochs_1024","en") \
     .setInputCols(["document"]) \
     .setOutputCol("output")

pipeline = Pipeline().setStages([documentAssembler, t5])
data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text")
pipelineModel = pipeline.fit(data)
pipelineDF = pipelineModel.transform(data)


val documentAssembler = new DocumentAssembler()
    .setInputCols("text")
    .setOutputCols("document")

val t5 = T5Transformer.pretrained("russian_summarization_lenta_model_mt5_base_7_epochs_1024", "en")
    .setInputCols(Array("documents")) 
    .setOutputCol("output") 
    
val pipeline = new Pipeline().setStages(Array(documentAssembler, t5))
val data = Seq("I love spark-nlp").toDS.toDF("text")
val pipelineModel = pipeline.fit(data)
val pipelineDF = pipelineModel.transform(data)

Model Information

Model Name: russian_summarization_lenta_model_mt5_base_7_epochs_1024
Compatibility: Spark NLP 5.4.2+
License: Open Source
Edition: Official
Input Labels: [document]
Output Labels: [output]
Language: en
Size: 2.3 GB

References

https://huggingface.co/i-k-a/ru_summarization_lenta_model_mt5-base_7_epochs_1024