ALBERT Sequence Classification Base - Toxicity (albert_base_toxicity)

Description

    ALBERT Model with sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for multi-class document classification tasks.

albert_base_sequence_classifier_imdb is a fine-tuned ALBERT model that is ready to be used for Sequence Classification tasks such as sentiment analysis or multi-class text classification and it achieves state-of-the-art performance.

We used TFAlbertForSequenceClassification to train this model and used AlbertForSequenceClassification annotator in Spark NLP 🚀 for prediction at scale!

Download Copy S3 URI

How to use


document_assembler = DocumentAssembler() .setInputCol('text') .setOutputCol('document')

tokenizer = Tokenizer() .setInputCols(['document']) .setOutputCol('token')

sequenceClassifier = AlbertForSequenceClassification .pretrained('albert_base_toxicity', 'en') .setInputCols(['token', 'document']) .setOutputCol('class') .setCaseSensitive(False) .setMaxSentenceLength(512)

pipeline = Pipeline(stages=[
document_assembler,
tokenizer,
sequenceClassifier
])

example = spark.createDataFrame([['I really liked that movie!']]).toDF("text")
result = pipeline.fit(example).transform(example)


val document_assembler = DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")

val tokenizer = Tokenizer()
.setInputCols("document")
.setOutputCol("token")

val tokenClassifier = AlbertForSequenceClassification.pretrained("albert_base_toxicity", "en")
.setInputCols("document", "token")
.setOutputCol("class")
.setCaseSensitive(false)
.setMaxSentenceLength(512)

val pipeline = new Pipeline().setStages(Array(document_assembler, tokenizer, sequenceClassifier))

val example = Seq("I really liked that movie!").toDS.toDF("text")

val result = pipeline.fit(example).transform(example)

Model Information

Model Name: albert_base_toxicity
Compatibility: Spark NLP 5.4.2+
License: Open Source
Edition: Official
Input Labels: [token, document]
Output Labels: [label]
Language: en
Size: 44.2 MB
Case sensitive: true