English bert_extractive_qa_large_project BertForQuestionAnswering from amara16

Description

Pretrained BertForQuestionAnswering model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.bert_extractive_qa_large_project is a English model originally trained by amara16.

Download Copy S3 URI

How to use

             
documentAssembler = MultiDocumentAssembler() \
     .setInputCol(["question", "context"]) \
     .setOutputCol(["document_question", "document_context"])
    
spanClassifier = BertForQuestionAnswering.pretrained("bert_extractive_qa_large_project","en") \
     .setInputCols(["document_question","document_context"]) \
     .setOutputCol("answer")

pipeline = Pipeline().setStages([documentAssembler, spanClassifier])
data = spark.createDataFrame([["What framework do I use?","I use spark-nlp."]]).toDF("document_question", "document_context")
pipelineModel = pipeline.fit(data)
pipelineDF = pipelineModel.transform(data)


val documentAssembler = new MultiDocumentAssembler()
    .setInputCol(Array("question", "context")) 
    .setOutputCol(Array("document_question", "document_context"))
    
val spanClassifier = BertForQuestionAnswering.pretrained("bert_extractive_qa_large_project", "en")
    .setInputCols(Array("document_question","document_context")) 
    .setOutputCol("answer") 
    
val pipeline = new Pipeline().setStages(Array(documentAssembler, spanClassifier))
val data = Seq("What framework do I use?","I use spark-nlp.").toDS.toDF("document_question", "document_context")
val pipelineModel = pipeline.fit(data)
val pipelineDF = pipelineModel.transform(data)

Model Information

Model Name: bert_extractive_qa_large_project
Compatibility: Spark NLP 5.4.2+
License: Open Source
Edition: Official
Input Labels: [document_question, document_context]
Output Labels: [answer]
Language: en
Size: 1.2 GB

References

https://huggingface.co/amara16/bert-extractive-qa-large-project