French CamemBertForSequenceClassification (from antoinelouis)

Description

Pretrained CamemBertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.

Download Copy S3 URI

How to use



document_assembler = DocumentAssembler()    .setInputCol("text")    .setOutputCol("document")

tokenizer = Tokenizer()    .setInputCols("document")    .setOutputCol("token")  
    
sequenceClassifier = CamemBertForSequenceClassification.pretrained("camembert_crossencoder_classification_large_mmarco","fr")            .setInputCols(["document","token"])            .setOutputCol("class")

pipeline = Pipeline().setStages([document_assembler, tokenizer, sequenceClassifier])

data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")

result = pipeline.fit(data).transform(data)



val document_assembler = new DocumentAssembler()
    .setInputCol("text")
    .setOutputCol("document")

val tokenizer = new Tokenizer()
    .setInputCols("document") 
    .setOutputCol("token")  
    
val sequenceClassifier = CamemBertForSequenceClassification.pretrained("camembert_crossencoder_classification_large_mmarco","fr")
            .setInputCols(Array("document","token"))
            .setOutputCol("class")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, sequenceClassifier))

val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")

val result = pipeline.fit(data).transform(data)




Model Information

Model Name: camembert_crossencoder_classification_large_mmarco
Compatibility: Spark NLP 5.5.0+
License: Open Source
Edition: Official
Input Labels: [document_question, document_context]
Output Labels: [answer]
Language: en
Size: 411.0 MB
Case sensitive: false
Max sentence length: 512