Description
Pretrained DeBertaForQuestionAnswering model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.deberta_v2_base_japanese_finetuned_qae
is a Japanese model originally trained by Mizuiro-sakura.
How to use
documentAssembler = MultiDocumentAssembler() \
.setInputCol(["question", "context"]) \
.setOutputCol(["document_question", "document_context"])
spanClassifier = DeBertaForQuestionAnswering.pretrained("deberta_v2_base_japanese_finetuned_qae","ja") \
.setInputCols(["document_question","document_context"]) \
.setOutputCol("answer")
pipeline = Pipeline().setStages([documentAssembler, spanClassifier])
data = spark.createDataFrame([["What framework do I use?","I use spark-nlp."]]).toDF("document_question", "document_context")
pipelineModel = pipeline.fit(data)
pipelineDF = pipelineModel.transform(data)
val documentAssembler = new MultiDocumentAssembler()
.setInputCol(Array("question", "context"))
.setOutputCol(Array("document_question", "document_context"))
val spanClassifier = DeBertaForQuestionAnswering.pretrained("deberta_v2_base_japanese_finetuned_qae", "ja")
.setInputCols(Array("document_question","document_context"))
.setOutputCol("answer")
val pipeline = new Pipeline().setStages(Array(documentAssembler, spanClassifier))
val data = Seq("What framework do I use?","I use spark-nlp.").toDS.toDF("document_question", "document_context")
val pipelineModel = pipeline.fit(data)
val pipelineDF = pipelineModel.transform(data)
Model Information
Model Name: | deberta_v2_base_japanese_finetuned_qae |
Compatibility: | Spark NLP 5.5.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document_question, document_context] |
Output Labels: | [answer] |
Language: | ja |
Size: | 419.0 MB |
References
https://huggingface.co/Mizuiro-sakura/deberta-v2-base-japanese-finetuned-QAe