Description
Pretrained XlmRoBertaForQuestionAnswering model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.thai_xlm_roberta_squad
is a Thai model originally trained by Teera.
How to use
documentAssembler = MultiDocumentAssembler() \
.setInputCol(["question", "context"]) \
.setOutputCol(["document_question", "document_context"])
spanClassifier = XlmRoBertaForQuestionAnswering.pretrained("thai_xlm_roberta_squad","th") \
.setInputCols(["document_question","document_context"]) \
.setOutputCol("answer")
pipeline = Pipeline().setStages([documentAssembler, spanClassifier])
data = spark.createDataFrame([["What framework do I use?","I use spark-nlp."]]).toDF("document_question", "document_context")
pipelineModel = pipeline.fit(data)
pipelineDF = pipelineModel.transform(data)
val documentAssembler = new MultiDocumentAssembler()
.setInputCol(Array("question", "context"))
.setOutputCol(Array("document_question", "document_context"))
val spanClassifier = XlmRoBertaForQuestionAnswering.pretrained("thai_xlm_roberta_squad", "th")
.setInputCols(Array("document_question","document_context"))
.setOutputCol("answer")
val pipeline = new Pipeline().setStages(Array(documentAssembler, spanClassifier))
val data = Seq("What framework do I use?","I use spark-nlp.").toDS.toDF("document_question", "document_context")
val pipelineModel = pipeline.fit(data)
val pipelineDF = pipelineModel.transform(data)
Model Information
Model Name: | thai_xlm_roberta_squad |
Compatibility: | Spark NLP 5.4.2+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document_question, document_context] |
Output Labels: | [answer] |
Language: | th |
Size: | 882.1 MB |
References
https://huggingface.co/Teera/thai-xlm-roberta-squad