Hindi indic_hindi_bengali_mlm_squad_tydi_mlqa AlbertForQuestionAnswering from hapandya

Description

Pretrained AlbertForQuestionAnswering model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.indic_hindi_bengali_mlm_squad_tydi_mlqa is a Hindi model originally trained by hapandya.

Download Copy S3 URI

How to use

             
documentAssembler = MultiDocumentAssembler() \
     .setInputCol(["question", "context"]) \
     .setOutputCol(["document_question", "document_context"])
    
spanClassifier = AlbertForQuestionAnswering.pretrained("indic_hindi_bengali_mlm_squad_tydi_mlqa","hi") \
     .setInputCols(["document_question","document_context"]) \
     .setOutputCol("answer")

pipeline = Pipeline().setStages([documentAssembler, spanClassifier])
data = spark.createDataFrame([["What framework do I use?","I use spark-nlp."]]).toDF("document_question", "document_context")
pipelineModel = pipeline.fit(data)
pipelineDF = pipelineModel.transform(data)


val documentAssembler = new MultiDocumentAssembler()
    .setInputCol(Array("question", "context")) 
    .setOutputCol(Array("document_question", "document_context"))
    
val spanClassifier = AlbertForQuestionAnswering.pretrained("indic_hindi_bengali_mlm_squad_tydi_mlqa", "hi")
    .setInputCols(Array("document_question","document_context")) 
    .setOutputCol("answer") 
    
val pipeline = new Pipeline().setStages(Array(documentAssembler, spanClassifier))
val data = Seq("What framework do I use?","I use spark-nlp.").toDS.toDF("document_question", "document_context")
val pipelineModel = pipeline.fit(data)
val pipelineDF = pipelineModel.transform(data)

Model Information

Model Name: indic_hindi_bengali_mlm_squad_tydi_mlqa
Compatibility: Spark NLP 5.5.0+
License: Open Source
Edition: Official
Input Labels: [document_question, document_context]
Output Labels: [answer]
Language: hi
Size: 125.4 MB

References

https://huggingface.co/hapandya/indic-hi-bn-MLM-SQuAD-TyDi-MLQA