English less_100000_xlm_roberta_mmar_recipe_10_base XlmRoBertaEmbeddings from CennetOguz

Description

Pretrained XlmRoBertaEmbeddings model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.less_100000_xlm_roberta_mmar_recipe_10_base is a English model originally trained by CennetOguz.

Download Copy S3 URI

How to use

 
documentAssembler = DocumentAssembler() \
      .setInputCol("text") \
      .setOutputCol("document")
    
tokenizer = Tokenizer() \ 
      .setInputCols("document") \ 
      .setOutputCol("token")

embeddings = XlmRoBertaEmbeddings.pretrained("less_100000_xlm_roberta_mmar_recipe_10_base","en") \
      .setInputCols(["document", "token"]) \
      .setOutputCol("embeddings")       
        
pipeline = Pipeline().setStages([documentAssembler, tokenizer, embeddings])
data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text")
pipelineModel = pipeline.fit(data)
pipelineDF = pipelineModel.transform(data)


val documentAssembler = new DocumentAssembler() 
    .setInputCol("text") 
    .setOutputCol("document")
    
val tokenizer = new Tokenizer() 
    .setInputCols(Array("document"))
    .setOutputCol("token")

val embeddings = XlmRoBertaEmbeddings.pretrained("less_100000_xlm_roberta_mmar_recipe_10_base","en") 
    .setInputCols(Array("document", "token")) 
    .setOutputCol("embeddings")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, embeddings))
val data = Seq("I love spark-nlp").toDF("text")
val pipelineModel = pipeline.fit(data)
val pipelineDF = pipelineModel.transform(data)

Model Information

Model Name: less_100000_xlm_roberta_mmar_recipe_10_base
Compatibility: Spark NLP 5.5.0+
License: Open Source
Edition: Official
Input Labels: [document, token]
Output Labels: [xlm_roberta]
Language: en
Size: 1.0 GB

References

https://huggingface.co/CennetOguz/less_100000_xlm_roberta_mmar_recipe_10_base