English RoBertaForSequenceClassification Large Cased model (from soleimanian)

Description

Pretrained RoBertaForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. financial-roberta-large-sentiment is a English model originally trained by soleimanian.

Predicted Entities

neutral, negative, positive

Download Copy S3 URI

How to use

documentAssembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")

tokenizer = Tokenizer() \
    .setInputCols("document") \
    .setOutputCol("token")

seq_classifier = RoBertaForSequenceClassification.pretrained("roberta_classifier_financial_large_sentiment","en") \
    .setInputCols(["document", "token"]) \
    .setOutputCol("class")

pipeline = Pipeline(stages=[documentAssembler, tokenizer, seq_classifier])

data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")

result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
      .setInputCols(Array("text"))
      .setOutputCols(Array("document"))

val tokenizer = new Tokenizer()
    .setInputCols("document")
    .setOutputCol("token")

val seq_classifier = RoBertaForSequenceClassification.pretrained("roberta_classifier_financial_large_sentiment","en")
    .setInputCols(Array("document", "token"))
    .setOutputCol("class")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, seq_classifier))

val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")

val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.classify.roberta.sentiment.large.by_soleimanian").predict("""PUT YOUR STRING HERE""")

Model Information

Model Name: roberta_classifier_financial_large_sentiment
Compatibility: Spark NLP 5.5.0+
License: Open Source
Edition: Official
Input Labels: [document, token]
Output Labels: [class]
Language: en
Size: 1.3 GB

References

References

  • https://huggingface.co/soleimanian/financial-roberta-large-sentiment
  • https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4115943