None m_e5_base_v2_e_2_t_llama_index E5Embeddings from shrijayan

Description

Pretrained E5Embeddings model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.m_e5_base_v2_e_2_t_llama_index is a None model originally trained by shrijayan.

Download Copy S3 URI

How to use

 
documentAssembler = DocumentAssembler() \
      .setInputCol("text") \
      .setOutputCol("document")
    
embeddings = E5Embeddings.pretrained("m_e5_base_v2_e_2_t_llama_index","nan") \
      .setInputCols(["document"]) \
      .setOutputCol("embeddings")       
        
pipeline = Pipeline().setStages([documentAssembler, embeddings])
data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text")
pipelineModel = pipeline.fit(data)
pipelineDF = pipelineModel.transform(data)


val documentAssembler = new DocumentAssembler() 
    .setInputCol("text") 
    .setOutputCol("document")
    
val embeddings = E5Embeddings.pretrained("m_e5_base_v2_e_2_t_llama_index","nan") 
    .setInputCols(Array("document")) 
    .setOutputCol("embeddings")

val pipeline = new Pipeline().setStages(Array(documentAssembler, embeddings))
val data = Seq("I love spark-nlp").toDF("text")
val pipelineModel = pipeline.fit(data)
val pipelineDF = pipelineModel.transform(data)

Model Information

Model Name: m_e5_base_v2_e_2_t_llama_index
Compatibility: Spark NLP 5.5.0+
License: Open Source
Edition: Official
Input Labels: [document]
Output Labels: [E5]
Language: nan
Size: 385.3 MB

References

https://huggingface.co/shrijayan/M-e5-base-v2_E-2_T-Llama.Index