English qa_synth_data_with_unanswerable_24_aug XlmRoBertaForQuestionAnswering from am-infoweb

Description

Pretrained XlmRoBertaForQuestionAnswering model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.qa_synth_data_with_unanswerable_24_aug is a English model originally trained by am-infoweb.

Download Copy S3 URI

How to use

             
documentAssembler = MultiDocumentAssembler() \
     .setInputCol(["question", "context"]) \
     .setOutputCol(["document_question", "document_context"])
    
spanClassifier = XlmRoBertaForQuestionAnswering.pretrained("qa_synth_data_with_unanswerable_24_aug","en") \
     .setInputCols(["document_question","document_context"]) \
     .setOutputCol("answer")

pipeline = Pipeline().setStages([documentAssembler, spanClassifier])
data = spark.createDataFrame([["What framework do I use?","I use spark-nlp."]]).toDF("document_question", "document_context")
pipelineModel = pipeline.fit(data)
pipelineDF = pipelineModel.transform(data)


val documentAssembler = new MultiDocumentAssembler()
    .setInputCol(Array("question", "context")) 
    .setOutputCol(Array("document_question", "document_context"))
    
val spanClassifier = XlmRoBertaForQuestionAnswering.pretrained("qa_synth_data_with_unanswerable_24_aug", "en")
    .setInputCols(Array("document_question","document_context")) 
    .setOutputCol("answer") 
    
val pipeline = new Pipeline().setStages(Array(documentAssembler, spanClassifier))
val data = Seq("What framework do I use?","I use spark-nlp.").toDS.toDF("document_question", "document_context")
val pipelineModel = pipeline.fit(data)
val pipelineDF = pipelineModel.transform(data)

Model Information

Model Name: qa_synth_data_with_unanswerable_24_aug
Compatibility: Spark NLP 5.5.0+
License: Open Source
Edition: Official
Input Labels: [document_question, document_context]
Output Labels: [answer]
Language: en
Size: 803.3 MB

References

https://huggingface.co/am-infoweb/QA_SYNTH_DATA_WITH_UNANSWERABLE_24_AUG