Description
Pretrained XlmRobertaForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. deoffxlmr-mono-malyalam is a Malayalam model originally trained by Hate-speech-CNERG.
Predicted Entities
Not_offensive, Off_target_group, Profanity, Off_target_ind, Not_in_intended_language
How to use
documentAssembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")
tokenizer = Tokenizer() \
    .setInputCols("document") \
    .setOutputCol("token")
seq_classifier = XlmRoBertaForSequenceClassification.pretrained("xlmroberta_classifier_deoffxlmr_mono_malyalam","ml") \
    .setInputCols(["document", "token"]) \
    .setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, seq_classifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
      .setInputCols(Array("text"))
      .setOutputCols(Array("document"))
val tokenizer = new Tokenizer()
    .setInputCols("document")
    .setOutputCol("token")
val seq_classifier = XlmRoBertaForSequenceClassification.pretrained("xlmroberta_classifier_deoffxlmr_mono_malyalam","ml")
    .setInputCols(Array("document", "token"))
    .setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, seq_classifier))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("ml.classify.xlmr_roberta").predict("""PUT YOUR STRING HERE""")
Model Information
| Model Name: | xlmroberta_classifier_deoffxlmr_mono_malyalam | 
| Compatibility: | Spark NLP 5.5.0+ | 
| License: | Open Source | 
| Edition: | Official | 
| Input Labels: | [document, token] | 
| Output Labels: | [class] | 
| Language: | ml | 
| Size: | 1.0 GB | 
References
References
- https://huggingface.co/Hate-speech-CNERG/deoffxlmr-mono-malyalam
- https://www.aclweb.org/anthology/2021.dravidianlangtech-1.38/