English DeBertaForSequenceClassification (from protectai)

Description

DeBERTa v3 model with sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for multi-class document classification tasks.

deberta_v3_base_sequence_classifier_imdb is a fine-tuned DeBERTa model that is ready to be used for Sequence Classification tasks such as sentiment analysis or multi-class text classification and it achieves state-of-the-art performance.

We used TFDebertaV2ForSequenceClassification to train this model and used DeBertaForSequenceClassification annotator in Spark NLP 🚀 for prediction at scale!

Download Copy S3 URI

How to use


document_assembler = DocumentAssembler()\ 
.setInputCol("text")\
.setOutputCol("document")

tokenizer = Tokenizer()\
.setInputCols(['document'])\ 
.setOutputCol('token') 

sequenceClassifier = DeBertaForSequenceClassification.pretrained("deberta_classification_base_prompt", "en")\
.setInputCols(["document", "token"])\
.setOutputCol("class")\
.setCaseSensitive(True)\ 
.setMaxSentenceLength(512) 

pipeline = Pipeline(stages=[
document_assembler,
tokenizer,
sequenceClassifier
])

example = spark.createDataFrame([['I really liked that movie!']]).toDF("text")
result = pipeline.fit(example).transform(example)



val document_assembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")

val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")

val sequenceClassifier = DeBertaForSequenceClassification.pretrained("deberta_classification_base_prompt", "en")
.setInputCols("document", "token")
.setOutputCol("class")
.setCaseSensitive(true)
.setMaxSentenceLength(512)

val pipeline = new Pipeline().setStages(Array(document_assembler, tokenizer, sequenceClassifier))

val example = Seq("I really liked that movie!").toDS.toDF("text")

val result = pipeline.fit(example).transform(example)




Model Information

Model Name: deberta_classification_base_prompt
Compatibility: Spark NLP 5.5.0+
License: Open Source
Edition: Official
Input Labels: [token, document]
Output Labels: [label]
Language: en
Size: 710.8 MB
Case sensitive: true