Description
Pretrained XlmRoBertaEmbeddings model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.furina_with_transliteration_minangkabau is a English model originally trained by yihongLiu.
How to use
 
documentAssembler = DocumentAssembler() \
      .setInputCol("text") \
      .setOutputCol("document")
    
tokenizer = Tokenizer() \ 
      .setInputCols("document") \ 
      .setOutputCol("token")
embeddings = XlmRoBertaEmbeddings.pretrained("furina_with_transliteration_minangkabau","en") \
      .setInputCols(["document", "token"]) \
      .setOutputCol("embeddings")       
        
pipeline = Pipeline().setStages([documentAssembler, tokenizer, embeddings])
data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text")
pipelineModel = pipeline.fit(data)
pipelineDF = pipelineModel.transform(data)
val documentAssembler = new DocumentAssembler() 
    .setInputCol("text") 
    .setOutputCol("document")
    
val tokenizer = new Tokenizer() 
    .setInputCols(Array("document"))
    .setOutputCol("token")
val embeddings = XlmRoBertaEmbeddings.pretrained("furina_with_transliteration_minangkabau","en") 
    .setInputCols(Array("document", "token")) 
    .setOutputCol("embeddings")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, embeddings))
val data = Seq("I love spark-nlp").toDF("text")
val pipelineModel = pipeline.fit(data)
val pipelineDF = pipelineModel.transform(data)
Model Information
| Model Name: | furina_with_transliteration_minangkabau | 
| Compatibility: | Spark NLP 5.5.0+ | 
| License: | Open Source | 
| Edition: | Official | 
| Input Labels: | [document, token] | 
| Output Labels: | [xlm_roberta] | 
| Language: | en | 
| Size: | 1.9 GB | 
References
https://huggingface.co/yihongLiu/furina-with-transliteration-min