English bert_large_cased_whole_word_masking BertEmbeddings from huggingface

Description

Pretrained BertEmbeddings model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.bert_large_cased_whole_word_masking is a English model originally trained by huggingface.

Predicted Entities

Download Copy S3 URI

How to use

document_assembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("documents")
    
    
embeddings =BertEmbeddings.pretrained("bert_large_cased_whole_word_masking","en") \
            .setInputCols(["documents","token"]) \
            .setOutputCol("embeddings")

pipeline = Pipeline().setStages([document_assembler, embeddings])

pipelineModel = pipeline.fit(data)

pipelineDF = pipelineModel.transform(data)
val document_assembler = new DocumentAssembler()
    .setInputCol("text") 
    .setOutputCol("embeddings")
    
val embeddings = BertEmbeddings 
    .pretrained("bert_large_cased_whole_word_masking", "en")
    .setInputCols(Array("documents","token")) 
    .setOutputCol("embeddings") 

val pipeline = new Pipeline().setStages(Array(document_assembler, embeddings))

val pipelineModel = pipeline.fit(data)

val pipelineDF = pipelineModel.transform(data)

Model Information

Model Name: bert_large_cased_whole_word_masking
Compatibility: Spark NLP 5.5.0+
License: Open Source
Edition: Official
Input Labels: [document, token]
Output Labels: [bert]
Language: en
Size: 1.2 GB

References

References

https://huggingface.co/bert-large-cased-whole-word-masking