Description
Pretrained BertForTokenClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. bert-base-vietnamese-upos is a Vietnamese model originally trained by KoichiYasuoka.
Predicted Entities
NOUN, INTJ, AUX, ADP, DET, X, SYM, NUM, PUNCT, PRON, PROPN, VERB, ADJ, PART, CCONJ, ADV, SCONJ
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
tokenClassifier = BertForTokenClassification.pretrained("bert_token_classifier_base_vietnamese_upos","vi") \
.setInputCols(["document", "token"]) \
.setOutputCol("ner")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, tokenClassifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val tokenClassifier = BertForTokenClassification.pretrained("bert_token_classifier_base_vietnamese_upos","vi")
.setInputCols(Array("document", "token"))
.setOutputCol("ner")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, tokenClassifier))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
Model Information
| Model Name: | bert_token_classifier_base_vietnamese_upos |
| Compatibility: | Spark NLP 5.5.0+ |
| License: | Open Source |
| Edition: | Official |
| Input Labels: | [document, token] |
| Output Labels: | [ner] |
| Language: | vi |
| Size: | 429.0 MB |
References
References
- https://huggingface.co/KoichiYasuoka/bert-base-vietnamese-upos
- https://universaldependencies.org/u/pos/
- https://github.com/KoichiYasuoka/esupar