Description
Pretrained BertForTokenClassification, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.llmlingua_2_bert_base_multilingual_cased_meetingbank_microsoft_pipeline is a Multilingual model originally trained by microsoft.
How to use
pipeline = PretrainedPipeline("llmlingua_2_bert_base_multilingual_cased_meetingbank_microsoft_pipeline", lang = "xx")
annotations = pipeline.transform(df)
val pipeline = new PretrainedPipeline("llmlingua_2_bert_base_multilingual_cased_meetingbank_microsoft_pipeline", lang = "xx")
val annotations = pipeline.transform(df)
Model Information
| Model Name: | llmlingua_2_bert_base_multilingual_cased_meetingbank_microsoft_pipeline |
| Type: | pipeline |
| Compatibility: | Spark NLP 5.5.0+ |
| License: | Open Source |
| Edition: | Official |
| Language: | xx |
| Size: | 665.4 MB |
References
https://huggingface.co/microsoft/llmlingua-2-bert-base-multilingual-cased-meetingbank
Included Models
- DocumentAssembler
- TokenizerModel
- BertForTokenClassification