Description
Pretrained BertSentenceEmbeddings model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.sent_fbert is a English model originally trained by diptanu.
How to use
 
documentAssembler = DocumentAssembler() \
      .setInputCol("text") \
      .setOutputCol("document")
sentenceDL = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx") \
      .setInputCols(["document"]) \
      .setOutputCol("sentence")
embeddings = BertSentenceEmbeddings.pretrained("sent_fbert","en") \
      .setInputCols(["sentence"]) \
      .setOutputCol("embeddings")       
        
pipeline = Pipeline().setStages([documentAssembler, sentenceDL, embeddings])
data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text")
pipelineModel = pipeline.fit(data)
pipelineDF = pipelineModel.transform(data)
val documentAssembler = new DocumentAssembler() 
    .setInputCol("text") 
    .setOutputCol("document")
    
val sentenceDL = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")
	.setInputCols(Array("document"))
	.setOutputCol("sentence")
val embeddings = BertSentenceEmbeddings.pretrained("sent_fbert","en") 
    .setInputCols(Array("sentence")) 
    .setOutputCol("embeddings")
val pipeline = new Pipeline().setStages(Array(documentAssembler, sentenceDL, embeddings))
val data = Seq("I love spark-nlp").toDF("text")
val pipelineModel = pipeline.fit(data)
val pipelineDF = pipelineModel.transform(data)
Model Information
| Model Name: | sent_fbert | 
| Compatibility: | Spark NLP 5.5.0+ | 
| License: | Open Source | 
| Edition: | Official | 
| Input Labels: | [sentence] | 
| Output Labels: | [embeddings] | 
| Language: | en | 
| Size: | 406.2 MB | 
References
https://huggingface.co/diptanu/fBERT