English cross_all_bs192_hardneg_finetuned_webnlg2020_relevance_pipeline pipeline MPNetEmbeddings from teven

Description

Pretrained MPNetEmbeddings, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.cross_all_bs192_hardneg_finetuned_webnlg2020_relevance_pipeline is a English model originally trained by teven.

Download Copy S3 URI

How to use


pipeline = PretrainedPipeline("cross_all_bs192_hardneg_finetuned_webnlg2020_relevance_pipeline", lang = "en")
annotations =  pipeline.transform(df)   


val pipeline = new PretrainedPipeline("cross_all_bs192_hardneg_finetuned_webnlg2020_relevance_pipeline", lang = "en")
val annotations = pipeline.transform(df)

Model Information

Model Name: cross_all_bs192_hardneg_finetuned_webnlg2020_relevance_pipeline
Type: pipeline
Compatibility: Spark NLP 5.5.0+
License: Open Source
Edition: Official
Language: en
Size: 407.3 MB

References

https://huggingface.co/teven/cross_all_bs192_hardneg_finetuned_WebNLG2020_relevance

Included Models

  • DocumentAssembler
  • MPNetEmbeddings