Description
Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.rubert_base_cased_russian_sentiment
is a Russian model originally trained by seara.
Predicted Entities
How to use
document_assembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")
tokenizer = Tokenizer()\
.setInputCols("document")\
.setOutputCol("token")
sequenceClassifier = BertForSequenceClassification.pretrained("rubert_base_cased_russian_sentiment","ru")\
.setInputCols(["document","token"])\
.setOutputCol("class")
pipeline = Pipeline().setStages([document_assembler, tokenizer, sequenceClassifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val document_assembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val sequenceClassifier = BertForSequenceClassification.pretrained("rubert_base_cased_russian_sentiment","ru")
.setInputCols(Array("document","token"))
.setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, sequenceClassifier))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
Model Information
Model Name: | rubert_base_cased_russian_sentiment |
Compatibility: | Spark NLP 5.5.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [class] |
Language: | ru |
Size: | 666.5 MB |
References
References
https://huggingface.co/seara/rubert-base-cased-russian-sentiment