Description
Pretrained MPNetEmbeddings model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.sentence_transformers_all_mpnet_base_v2_10epoch_100perp_cosine is a English model originally trained by ahessamb.
How to use
 
documentAssembler = DocumentAssembler() \
      .setInputCol("text") \
      .setOutputCol("document")
    
embeddings = MPNetEmbeddings.pretrained("sentence_transformers_all_mpnet_base_v2_10epoch_100perp_cosine","en") \
      .setInputCols(["document"]) \
      .setOutputCol("embeddings")       
        
pipeline = Pipeline().setStages([documentAssembler, embeddings])
data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text")
pipelineModel = pipeline.fit(data)
pipelineDF = pipelineModel.transform(data)
val documentAssembler = new DocumentAssembler() 
    .setInputCol("text") 
    .setOutputCol("document")
    
val embeddings = MPNetEmbeddings.pretrained("sentence_transformers_all_mpnet_base_v2_10epoch_100perp_cosine","en") 
    .setInputCols(Array("document")) 
    .setOutputCol("embeddings")
val pipeline = new Pipeline().setStages(Array(documentAssembler, embeddings))
val data = Seq("I love spark-nlp").toDF("text")
val pipelineModel = pipeline.fit(data)
val pipelineDF = pipelineModel.transform(data)
Model Information
| Model Name: | sentence_transformers_all_mpnet_base_v2_10epoch_100perp_cosine | 
| Compatibility: | Spark NLP 5.5.0+ | 
| License: | Open Source | 
| Edition: | Official | 
| Input Labels: | [document] | 
| Output Labels: | [mpnet] | 
| Language: | en | 
| Size: | 406.9 MB | 
References
https://huggingface.co/ahessamb/sentence-transformers-all-mpnet-base-v2-10epoch-100perp-cosine