Description
“ XLM-RoBERTa Model with sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for multi-class document classification tasks.
xlm_roberta_base_sequence_classifier_language_detection is a fine-tuned XLM-RoBERTa model that is ready to be used for Sequence Classification tasks such as sentiment analysis or multi-class text classification and it achieves state-of-the-art performance.
We used TFXLMRobertaForSequenceClassification to train this model and used XlmRoBertaForSequenceClassification annotator in Spark NLP 🚀 for prediction at scale!
How to use
.setInputCol('text') \
.setOutputCol('document')
tokenizer = Tokenizer() \
.setInputCols(['document']) \
.setOutputCol('token')
sequenceClassifier = XlmRoBertaForSequenceClassification \
.pretrained('xlm_roberta_base_sequence_classifier_language_detection', 'en') \
.setInputCols(['token', 'document']) \
.setOutputCol('class') \
.setCaseSensitive(True) \
.setMaxSentenceLength(512)
pipeline = Pipeline(stages=[
document_assembler,
tokenizer,
sequenceClassifier
])
example = spark.createDataFrame([['I really liked that movie!']]).toDF("text")
result = pipeline.fit(example).transform(example)
val document_assembler = DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val tokenClassifier = XlmRoBertaForSequenceClassification.pretrained("xlm_roberta_base_sequence_classifier_language_detection", "en")
.setInputCols("document", "token")
.setOutputCol("class")
.setCaseSensitive(true)
.setMaxSentenceLength(512)
val pipeline = new Pipeline().setStages(Array(document_assembler, tokenizer, sequenceClassifier))
val example = Seq("I really liked that movie!").toDS.toDF("text")
val result = pipeline.fit(example).transform(example)
Model Information
Model Name: | xlm_roberta_base_sequence_classifier_language_detection |
Compatibility: | Spark NLP 5.5.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [token, document] |
Output Labels: | [label] |
Language: | en |
Size: | 870.5 MB |
Case sensitive: | true |