Description
Pretrained CamemBertEmbeddings model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. legal-camembert
is a French model originally trained by maastrichtlawtech
.
Predicted Entities
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
embeddings = CamemBertEmbeddings.pretrained("camembert_french_legal","fr") \
.setInputCols(["document", "token"]) \
.setOutputCol("embeddings") \
.setCaseSensitive(True)
pipeline = Pipeline(stages=[documentAssembler, tokenizer, embeddings])
data = spark.createDataFrame([["J'adore Spark NLP"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val embeddings = CamemBertEmbeddings.pretrained("camembert_french_legal","fr")
.setInputCols(Array("document", "token"))
.setOutputCol("embeddings")
.setCaseSensitive(True)
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, embeddings))
val data = Seq("J'adore Spark NLP").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
Model Information
Model Name: | camembert_french_legal |
Compatibility: | Spark NLP 5.5.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [camembert] |
Language: | fr |
Size: | 412.8 MB |
References
References
https://huggingface.co/maastrichtlawtech/legal-camembert