English code_search_codebert_base_random_trimmed RoBertaForTokenClassification from DianaIulia

Description

Pretrained RoBertaForTokenClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.code_search_codebert_base_random_trimmed is a English model originally trained by DianaIulia.

Download Copy S3 URI

How to use

     
documentAssembler = DocumentAssembler() \
    .setInputCol('text') \
    .setOutputCol('document')
    
tokenizer = Tokenizer() \
    .setInputCols(['document']) \
    .setOutputCol('token')

tokenClassifier  = RoBertaForTokenClassification.pretrained("code_search_codebert_base_random_trimmed","en") \
     .setInputCols(["documents","token"]) \
     .setOutputCol("ner")

pipeline = Pipeline().setStages([documentAssembler, tokenizer, tokenClassifier])
data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text")
pipelineModel = pipeline.fit(data)
pipelineDF = pipelineModel.transform(data)


val documentAssembler = new DocumentAssembler()
    .setInputCols("text")
    .setOutputCols("document")
    
val tokenizer = new Tokenizer()
    .setInputCols("document")
    .setOutputCol("token")

val tokenClassifier = RoBertaForTokenClassification.pretrained("code_search_codebert_base_random_trimmed", "en")
    .setInputCols(Array("documents","token")) 
    .setOutputCol("ner") 
    
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, tokenClassifier))
val data = Seq("I love spark-nlp").toDS.toDF("text")
val pipelineModel = pipeline.fit(data)
val pipelineDF = pipelineModel.transform(data)

Model Information

Model Name: code_search_codebert_base_random_trimmed
Compatibility: Spark NLP 5.5.0+
License: Open Source
Edition: Official
Input Labels: [document, token]
Output Labels: [ner]
Language: en
Size: 466.1 MB

References

https://huggingface.co/DianaIulia/code_search_codebert_base_random_trimmed