Northern Sami norwegian_bokml_bert_base_sami_relevant BertForSequenceClassification from NbAiLab

Description

Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.norwegian_bokml_bert_base_sami_relevant is a Northern Sami model originally trained by NbAiLab.

Download Copy S3 URI

How to use

     
documentAssembler = DocumentAssembler() \
    .setInputCol('text') \
    .setOutputCol('document')
    
tokenizer = Tokenizer() \
    .setInputCols(['document']) \
    .setOutputCol('token')

sequenceClassifier  = BertForSequenceClassification.pretrained("norwegian_bokml_bert_base_sami_relevant","se") \
     .setInputCols(["documents","token"]) \
     .setOutputCol("class")

pipeline = Pipeline().setStages([documentAssembler, tokenizer, sequenceClassifier])
data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text")
pipelineModel = pipeline.fit(data)
pipelineDF = pipelineModel.transform(data)


val documentAssembler = new DocumentAssembler()
    .setInputCols("text")
    .setOutputCols("document")
    
val tokenizer = new Tokenizer()
    .setInputCols(Array("document"))
    .setOutputCol("token")

val sequenceClassifier = BertForSequenceClassification.pretrained("norwegian_bokml_bert_base_sami_relevant", "se")
    .setInputCols(Array("documents","token")) 
    .setOutputCol("class") 
    
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, sequenceClassifier))
val data = Seq("I love spark-nlp").toDS.toDF("text")
val pipelineModel = pipeline.fit(data)
val pipelineDF = pipelineModel.transform(data)

Model Information

Model Name: norwegian_bokml_bert_base_sami_relevant
Compatibility: Spark NLP 5.5.0+
License: Open Source
Edition: Official
Input Labels: [document, token]
Output Labels: [class]
Language: se
Size: 668.4 MB

References

https://huggingface.co/NbAiLab/nb-bert-base-sami-relevant