English bge_medembed_base_v0_1 BGEEmbeddings from abhinand

Description

Pretrained BGEEmbeddings model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. bge_medembed_base_v0_1 is a English model originally trained by abhinand

Download Copy S3 URI

How to use


document_assembler = DocumentAssembler()\
      .setInputCol("text")\
      .setOutputCol("document")

embeddings = BGEEmbeddings.pretrained("bge_medembed_base_v0_1","en")\
      .setInputCols(["document"])\
      .setOutputCol("embeddings")       
        
pipeline = Pipeline(
    stages = [
        document_assembler, 
        embeddings
])

data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text")

result = pipeline.fit(data).transform(data)


val document_assembler = new DocumentAssembler() 
    .setInputCol("text") 
    .setOutputCol("document")
    
val embeddings = BGEEmbeddings.pretrained("bge_medembed_base_v0_1","en") 
    .setInputCols(Array("document")) 
    .setOutputCol("embeddings")

val pipeline = new Pipeline().setStages(Array(document_assembler, embeddings))

val data = Seq("I love spark-nlp").toDS.toDF("text")

val result = pipeline.fit(data).transform(data)

Results


+----------------------------------------------------------------------------------------------------+
|                                                                                       bge_embedding|
+----------------------------------------------------------------------------------------------------+
|[{sentence_embeddings, 0, 15, I love spark-nlp, {sentence -> 0}, [-0.018065551, -0.032784615, 0.0...|
+----------------------------------------------------------------------------------------------------+

Model Information

Model Name: bge_medembed_base_v0_1
Compatibility: Spark NLP 5.5.0+
License: Open Source
Edition: Official
Input Labels: [document]
Output Labels: [bge]
Language: en
Size: 389.7 MB