Description
Pretrained RoBertaForZeroShotClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.nli_minilm2_l6_h768 is a English model originally trained by cross-encoder.
How to use
     
documentAssembler = DocumentAssembler() \
    .setInputCol('text') \
    .setOutputCol('document')
    
tokenizer = Tokenizer() \
    .setInputCols(['document']) \
    .setOutputCol('token')
zeroShotClassifier  = RoBertaForZeroShotClassification.pretrained("nli_minilm2_l6_h768","en") \
     .setInputCols(["document","token"]) \
     .setOutputCol("class")
pipeline = Pipeline().setStages([documentAssembler, tokenizer, zeroShotClassifier])
data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text")
pipelineModel = pipeline.fit(data)
pipelineDF = pipelineModel.transform(data)
val documentAssembler = new DocumentAssembler()
    .setInputCols("text")
    .setOutputCols("document")
    
val tokenizer = new Tokenizer()
    .setInputCols("document")
    .setOutputCol("token")
val zeroShotClassifier  = RoBertaForZeroShotClassification.pretrained("nli_minilm2_l6_h768", "en")
    .setInputCols(Array("documents","token")) 
    .setOutputCol("class") 
    
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, zeroShotClassifier))
val data = Seq("I love spark-nlp").toDS.toDF("text")
val pipelineModel = pipeline.fit(data)
val pipelineDF = pipelineModel.transform(data)
Model Information
| Model Name: | nli_minilm2_l6_h768 | 
| Compatibility: | Spark NLP 5.5.1+ | 
| License: | Open Source | 
| Edition: | Official | 
| Input Labels: | [document, token] | 
| Output Labels: | [class] | 
| Language: | en | 
| Size: | 306.5 MB | 
References
https://huggingface.co/cross-encoder/nli-MiniLM2-L6-H768