Description
Pretrained DeBertaForTokenClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.scenario_non_kd_scr_ner_full_mdeberta_data_univner_en55
is a English model originally trained by haryoaw.
How to use
documentAssembler = DocumentAssembler() \
.setInputCol('text') \
.setOutputCol('document')
tokenizer = Tokenizer() \
.setInputCols(['document']) \
.setOutputCol('token')
tokenClassifier = DeBertaForTokenClassification.pretrained("scenario_non_kd_scr_ner_full_mdeberta_data_univner_en55","en") \
.setInputCols(["documents","token"]) \
.setOutputCol("ner")
pipeline = Pipeline().setStages([documentAssembler, tokenizer, tokenClassifier])
data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text")
pipelineModel = pipeline.fit(data)
pipelineDF = pipelineModel.transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCols("text")
.setOutputCols("document")
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val tokenClassifier = DeBertaForTokenClassification.pretrained("scenario_non_kd_scr_ner_full_mdeberta_data_univner_en55", "en")
.setInputCols(Array("documents","token"))
.setOutputCol("ner")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, tokenClassifier))
val data = Seq("I love spark-nlp").toDS.toDF("text")
val pipelineModel = pipeline.fit(data)
val pipelineDF = pipelineModel.transform(data)
Model Information
Model Name: | scenario_non_kd_scr_ner_full_mdeberta_data_univner_en55 |
Compatibility: | Spark NLP 5.5.1+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [ner] |
Language: | en |
Size: | 884.3 MB |
References
https://huggingface.co/haryoaw/scenario-non-kd-scr-ner-full-mdeberta_data-univner_en55