Description
Pretrained E5Embeddings model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.medical_e5_base_v2_v0_1
is a English model originally trained by shrijayan.
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
embeddings = E5Embeddings.pretrained("medical_e5_base_v2_v0_1","en") \
.setInputCols(["document"]) \
.setOutputCol("embeddings")
pipeline = Pipeline().setStages([documentAssembler, embeddings])
data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text")
pipelineModel = pipeline.fit(data)
pipelineDF = pipelineModel.transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val embeddings = E5Embeddings.pretrained("medical_e5_base_v2_v0_1","en")
.setInputCols(Array("document"))
.setOutputCol("embeddings")
val pipeline = new Pipeline().setStages(Array(documentAssembler, embeddings))
val data = Seq("I love spark-nlp").toDF("text")
val pipelineModel = pipeline.fit(data)
val pipelineDF = pipelineModel.transform(data)
Model Information
Model Name: | medical_e5_base_v2_v0_1 |
Compatibility: | Spark NLP 5.5.1+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document] |
Output Labels: | [E5] |
Language: | en |
Size: | 399.5 MB |
References
https://huggingface.co/shrijayan/medical-e5-base-v2-v0.1