Description
Pretrained HubertForCTC model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.exp_w2v2t_thai_hubert_s975
is a Thai model originally trained by jonatasgrosman.
How to use
audioAssembler = AudioAssembler() \
.setInputCol("audio_content") \
.setOutputCol("audio_assembler")
speechToText = HubertForCTC.pretrained("exp_w2v2t_thai_hubert_s975","th") \
.setInputCols(["audio_assembler"]) \
.setOutputCol("text")
pipeline = Pipeline().setStages([audioAssembler, speechToText])
pipelineModel = pipeline.fit(data)
pipelineDF = pipelineModel.transform(data)
val audioAssembler = new DocumentAssembler()
.setInputCols("audio_content")
.setOutputCols("audio_assembler")
val speechToText = HubertForCTC.pretrained("exp_w2v2t_thai_hubert_s975", "th")
.setInputCols(Array("audio_assembler"))
.setOutputCol("text")
val pipeline = new Pipeline().setStages(Array(documentAssembler, speechToText))
val pipelineModel = pipeline.fit(data)
val pipelineDF = pipelineModel.transform(data)
Model Information
Model Name: | exp_w2v2t_thai_hubert_s975 |
Compatibility: | Spark NLP 5.5.1+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [audio_assembler] |
Output Labels: | [text] |
Language: | th |
Size: | 2.4 GB |
References
https://huggingface.co/jonatasgrosman/exp_w2v2t_th_hubert_s975