Swedish sent_bert_large_nordic_pile_1m_steps BertSentenceEmbeddings from AI-Sweden-Models

Description

Pretrained BertSentenceEmbeddings model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.sent_bert_large_nordic_pile_1m_steps is a Swedish model originally trained by AI-Sweden-Models.

Download Copy S3 URI

How to use

 
documentAssembler = DocumentAssembler() \
      .setInputCol("text") \
      .setOutputCol("document")

sentenceDL = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx") \
      .setInputCols(["document"]) \
      .setOutputCol("sentence")

embeddings = BertSentenceEmbeddings.pretrained("sent_bert_large_nordic_pile_1m_steps","sv") \
      .setInputCols(["sentence"]) \
      .setOutputCol("embeddings")       
        
pipeline = Pipeline().setStages([documentAssembler, sentenceDL, embeddings])
data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text")
pipelineModel = pipeline.fit(data)
pipelineDF = pipelineModel.transform(data)


val documentAssembler = new DocumentAssembler() 
    .setInputCol("text") 
    .setOutputCol("document")
    
val sentenceDL = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")
	.setInputCols(Array("document"))
	.setOutputCol("sentence")

val embeddings = BertSentenceEmbeddings.pretrained("sent_bert_large_nordic_pile_1m_steps","sv") 
    .setInputCols(Array("sentence")) 
    .setOutputCol("embeddings")

val pipeline = new Pipeline().setStages(Array(documentAssembler, sentenceDL, embeddings))
val data = Seq("I love spark-nlp").toDF("text")
val pipelineModel = pipeline.fit(data)
val pipelineDF = pipelineModel.transform(data)

Model Information

Model Name: sent_bert_large_nordic_pile_1m_steps
Compatibility: Spark NLP 5.5.1+
License: Open Source
Edition: Official
Input Labels: [sentence]
Output Labels: [embeddings]
Language: sv
Size: 1.4 GB

References

https://huggingface.co/AI-Sweden-Models/bert-large-nordic-pile-1M-steps