English sent_product_title_encoder_product_pipeline pipeline BertSentenceEmbeddings from kwakwak

Description

Pretrained BertSentenceEmbeddings, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.sent_product_title_encoder_product_pipeline is a English model originally trained by kwakwak.

Download Copy S3 URI

How to use


pipeline = PretrainedPipeline("sent_product_title_encoder_product_pipeline", lang = "en")
annotations =  pipeline.transform(df)   


val pipeline = new PretrainedPipeline("sent_product_title_encoder_product_pipeline", lang = "en")
val annotations = pipeline.transform(df)

Model Information

Model Name: sent_product_title_encoder_product_pipeline
Type: pipeline
Compatibility: Spark NLP 5.5.1+
License: Open Source
Edition: Official
Language: en
Size: 85.2 MB

References

https://huggingface.co/kwakwak/product_title_encoder-product

Included Models

  • DocumentAssembler
  • TokenizerModel
  • SentenceDetectorDLModel
  • BertSentenceEmbeddings