English giecom_vit_model_clasification_waste ViTForImageClassification from Giecom

Description

Pretrained ViTForImageClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.giecom_vit_model_clasification_waste is a English model originally trained by Giecom.

Download Copy S3 URI

How to use


		
		

image_assembler = ImageAssembler()\
  .setInputCol("image")\
  .setOutputCol("image_assembler")

imageClassifier = ViTForImageClassification.pretrained(""giecom_vit_model_clasification_waste","en")\
  .setInputCols("image_assembler")\
  .setOutputCol("class")

pipeline = Pipeline(stages=[
  image_assembler,
  imageClassifier,
])

pipelineModel = pipeline.fit(imageDF)

pipelineDF = pipelineModel.transform(imageDF)


val imageAssembler = new ImageAssembler()
    .setInputCol("image")
    .setOutputCol("image_assembler")

val imageClassifier =  ViTForImageClassification.pretrained("giecom_vit_model_clasification_waste","en") 
    .setInputCols("image_assembler") 
    .setOutputCol("class") 

val pipeline = new Pipeline().setStages(Array(imageAssembler, imageClassifier))

val pipelineModel = pipeline.fit(imageDF)

val pipelineDF = pipelineModel.transform(imageDF)

Model Information

Model Name: giecom_vit_model_clasification_waste
Compatibility: Spark NLP 5.5.1+
License: Open Source
Edition: Official
Input Labels: [image_assembler]
Output Labels: [label]
Language: en
Size: 321.3 MB

References

https://huggingface.co/Giecom/giecom-vit-model-clasification-waste