Description
Pretrained ViTForImageClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.fabric_test is a English model originally trained by gdecarlo.
How to use
		
		
image_assembler = ImageAssembler()\
  .setInputCol("image")\
  .setOutputCol("image_assembler")
imageClassifier = ViTForImageClassification.pretrained(""fabric_test","en")\
  .setInputCols("image_assembler")\
  .setOutputCol("class")
pipeline = Pipeline(stages=[
  image_assembler,
  imageClassifier,
])
pipelineModel = pipeline.fit(imageDF)
pipelineDF = pipelineModel.transform(imageDF)
val imageAssembler = new ImageAssembler()
    .setInputCol("image")
    .setOutputCol("image_assembler")
val imageClassifier =  ViTForImageClassification.pretrained("fabric_test","en") 
    .setInputCols("image_assembler") 
    .setOutputCol("class") 
val pipeline = new Pipeline().setStages(Array(imageAssembler, imageClassifier))
val pipelineModel = pipeline.fit(imageDF)
val pipelineDF = pipelineModel.transform(imageDF)
Model Information
| Model Name: | fabric_test | 
| Compatibility: | Spark NLP 5.5.1+ | 
| License: | Open Source | 
| Edition: | Official | 
| Input Labels: | [image_assembler] | 
| Output Labels: | [label] | 
| Language: | en | 
| Size: | 321.3 MB | 
References
https://huggingface.co/gdecarlo/fabric_test