Description
Pretrained Wav2Vec2ForCTC model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.maltese_kirundi
is a English model originally trained by Siyong.
How to use
audioAssembler = AudioAssembler() \
.setInputCol("audio_content") \
.setOutputCol("audio_assembler")
speechToText = Wav2Vec2ForCTC.pretrained("maltese_kirundi","en") \
.setInputCols(["audio_assembler"]) \
.setOutputCol("text")
pipeline = Pipeline().setStages([audioAssembler, speechToText])
pipelineModel = pipeline.fit(data)
pipelineDF = pipelineModel.transform(data)
val audioAssembler = new DocumentAssembler()
.setInputCols("audio_content")
.setOutputCols("audio_assembler")
val speechToText = Wav2Vec2ForCTC.pretrained("maltese_kirundi", "en")
.setInputCols(Array("audio_assembler"))
.setOutputCol("text")
val pipeline = new Pipeline().setStages(Array(documentAssembler, speechToText))
val pipelineModel = pipeline.fit(data)
val pipelineDF = pipelineModel.transform(data)
Model Information
Model Name: | maltese_kirundi |
Compatibility: | Spark NLP 5.5.1+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [audio_assembler] |
Output Labels: | [text] |
Language: | en |
Size: | 354.2 MB |
References
https://huggingface.co/Siyong/MT_RN